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The Schrodinger equation of the mesoscopic capacitance coupled circuit with an arbi-
trary power source is solved by means of two step unitary transformation. The original
Hamiltonian transformed to a very simple form by unitary operators so that it can
be easily treated. We derived the exact full wave functions in Fock state. By making
use of these wave functions and introducing the Lewis—Riesenfeld invariant operator,
the thermal state have been constructed. The fluctuations of charges and currents are
evaluated in thermal state. For T — 0, the uncertainty products between charges and
currents in thermal state recovers exactly to that of Fock state with n, m = 0.

KEY WORDS: mesoscopic capacitance coupled circuit; thermal state; uncertainty
product.
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1. INTRODUCTION

The quantum mechanical problem of the time-dependent Hamiltonian sys-
tems (TDHS) have been interested in the literature since the introduction of invari-
ant operator by Lewis (1967). The exact quantization of TDHS become possible
using several techniques such as propagator method (Gweon and Choi, 2003;
Yeon et al., 1993, 1996), invariant operator method (Choi, 2003, 2004; Choi and
Gweon, 2003; Um et al., 1997) and unitary(or canonical) transformation method
(Choi et al., 2002; Ji and Kim, 1996; Landovitz et al., 1979; Zhang et al., 2001,
2002a,b). We will use unitary transformation method in order to derive quan-
tum mechanical solution of mesoscopic capacitance coupled circuit with a time-
dependent power source. Although many actual dynamical systems have been
solved using approximation techniques and/or perturbation theory, we will inves-
tigate the exact solution of the Schrédinger equation of the system.
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The development of mesoscopic physics and nanoelectronics have been es-
pecially rapid during the last two decades due to the advance of lithography
techniques and crystal growth. The miniaturization of integrated circuits and com-
ponents towards atomic scale dimensions required the development of quantum
theory on a mesoscopic circuit, since the charge carriers exhibit quantum me-
chanical properties while the application of classical mechanics invalid (Buot,
1993). The quantum fluctuations of charge and current for the time-dependent LC
circuit (Baseia and De Brito, 1993) and RLC linear circuit (Chen et al., 1995;
Louisell, 1973; Zhang et al., 1998) with a power source have been investigated
in the literatures. In the previous paper (Choi et al., 2002), using unitary trans-
formation approach, we obtained wave functions with continuous spectrum as
well as discrete spectrum for the RLC linear circuit driven by time-dependent
electromotive force by introducing classical particular solutions of the system.
Recently, quantum properties such as uncertainties of charges and currents for the
two dimensional mesoscopic circuits with no power source are studied by Zhang
et al. (2001, 2002a,b) using canonical and unitary transformation method. These
quantum analysis of the electric circuit can also be applied to electrical equivalent
circuit for arrangement of trapped ion driven by a signal source attached to the
trap end caps (Heinzen and Wineland, 1990; Wineland and Dehmelt, 1975).

The quantum properties of the lossless LC circuit with a power source were
firstly investigated by Louisell (1973). However, Louisell’s study considered no
thermal effect. The main purpose of this paper is to construct the thermal state
of the mesoscopic capacitance coupled circuit with a power source. The well
known Liouville-von Neumann equation (Isihara, 1971; Robertson, 1993) for the
nonequilibrium dynamics can be applicable to both time-dependent harmonic and
unharmonic oscillators.

This paper organized as the following order. In Section 2, we derive the
time-dependent Hamiltonian of the system from classical equation of motion
for charges and, by introducing unitary operators, transform it to a quite simple
Hamiltonian whose quantum solution is easily solved. The exact wave function of
the system is investigated in Section 3. The thermal states of the system is derived
by introducing invariant operator in Section 4. In Section 5, the fluctuations of the
canonical variables and uncertainty relations between charges and their conjugate
currents will be investigated in the thermal state. Finally, we summarize the results
of the previous sections in the last section.

2. UNITARY TRANSFORMATION

We consider two loop of LC circuit coupled via capacitance as in Fig. 1. The
application of Kirchhoff’s law to each loop leads to the equation of motions for
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Fig. 1. Capacitance coupled mesoscopic circuit with a power source.

charges:
g q | — @
Li—— 4+ — = ¢&(1), 1
1o T c, o &(t) ey
d? -
LS 2 170, @

2 dt? C, Co

where g j(hereafter all j is j = 1, 2) are charges stored in C, respectively, and &(t)
is an arbitrary power source. Note that g; can be replaced with operators, §;, in
order to treat the system in view of quantum mechanics. Then, the corresponding
Hamiltonian is given by

P a @ @@ .

oL, T, tae tag T 2, T FWIn ®
where p; are conjugate current operators of §;, that are defined by p; =
—i ho/(dq;). They satisfies commutation relations such as [§;, p;] =i h. By
applying canonical equations of Hamiltonian, we can easily check that Eq. (3)
satisfies Eqgs. (1) and (2).

Unitary transformation approach is one of the convenient methods in order
to derive the quantum mechanical solution of the TDHS. To convert Eq. (3) into
a simple form whose quantum solution is well known, we use two step unitary
transformation. As a first step, we introduce a unitary operator that is given by

. i L8
Up =exp z(ﬁléll +41p1)In (L_)
2

. 1/8
l A R L2
X exp |:E(quz +G2p2)In <L_1) j|

i@
h

H =

X exXp |: (P1g2 — 132671):| , 4
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where

I 2 LiL,
— tan . Q)
2 Ly(1+ Co/C1) — Li(1 + Co/C2)

Note that the range of ¢ is restricted to —n /4 < ¢ < 7 /4. The transformation of
Eq. (3) by Eq. (4) can be performed as

(p:

A ~_ U
Hy=0;'A0, —i hu;la—;‘. (6)
Then, after straightforward calculation, the transformed Hamiltonian is given by
2
A1, p1r G2, P2 0) = Y Haj(@j, pjs 1), (7
j=1

where

. L, 1/4
H(4y, p1,t + =/ L{Lyw* gie(t) | — cosgp, (8
a1(q1s pr1, 1) = 2@ \/ 1Lootdi — 4 ()(L]> v, @)

Hur(Ga, P, 1) =

1/4
+ \/Llewzqg_th(f)( ) sing.  (9)

2./L1L2
Here w; is
o)
w; = , 10
J .0 (10)
with

L2 1 1 + Ll 1 1 .2 + sinng (11)
o= = cos? — ) sin ,
=vo\a o ¢ &G T¢,
L, (1 1 L1 1 1 ) sin 2¢
= |—= — — . 12
“ \ L <Co Cl) sin g + \V L <Co C2>COS v Co (12

Even though the original Hamiltonian Eq. (3) involves a cross term §;4», Eqs. (8)
and (9) contains no such cross term. However, they still involves power source
term. We concentrate on eliminating power source terms in the second step of
transformation. To do this, another unitary operator may be introduced as

Up = exp [l—h(plp(t)él + Pzp(t)c?z)}

x exp [_Lh(qlp(t)ﬁl + Q2p(l)ﬁ2)} . (13)

Here, q;,(t), p;p(t) are classical particular solutions of the firstly transformed
system that are described by Eq. (7) with Eqgs. (8) and (9) in ¢ and p space,
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respectively. The intriduction of these classical particular solutions makes easy to
solve the problem of electronic circuit coupled to a power source for both classical
and quantum viewpoints (Choi, 2006; Choi et al., 2002; Choi and Nahm, in press).
Using Hamilton’s equations, we can easily confirm that they satisfies the following
differential equations

1

Gip() + iq1p (1) — e() i, cose =0, (14)
1L2

. 2 . 4 L2

Bip(D) F @i p1y(t) = £0), ] 7= cos g = 0. (15)

1

Gap(t) + wrqap(t) — £(1). T3 Sing =0, (16)
142

. 2 . 4 L2 .

Pap(t) + wipop(t) — &(2),] L_l sing = 0. a7

By the same method as the first step, the second step unitary transformation of
Hamiltonian can be performed as

N aU

Hpy =U5'A,05 — i 03! azB' (18)
Then, after some algebra, we obtain the lastly transformed Hamiltonian in the
form

2
Hy(@1, prs G, po. ) =) H;(@js pjs 1), (19)
j=1
where
2
Hpi(G:, p:.t 4 =L Lya?d% + L (¢ 20
851G, Pj.t) = zm \/ﬁ 202+ L), (20)
with
Lp(t) = JLleq,,,a) a,q,p(n Q1)

Note that Eq. (20) is the same as that of the ordinary simple harmonic oscillator
except for the last term.
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3. WAVE FUNCTION

By expressing the Schrodinger equations related to Eq. (20) for each subscript
Jj in the form

e (qi,t
ih I/fln(ql )

= Hp1 Y, (q1. 1), (22)
ot
0 (q2, 1)
i = Hipr (42,1, (23)
we can easily identify the wave function in the transformed system:
Vum(@1:42.1) = Y1 (g1, DY, (42, 1). (24)

Here, ¥ and y2 are

wﬁ<q1,z>=(vL1L2“’1)l/4 ! H[(V“Lz“”)l/qu}

hm V2mn! h
L L
X exp (—zl—hzwlqlz) T:(1), (25)
B \/L1L261)2 1/4 1 «/Llea)g 172
1502,71(q29 t) = 7 Hm q2
b4 2mm! h
~LiL
X exp (— T hzwz q%) ), 26)
where
. 1 i ! ! !
Ti(t) = exp| —iwit | n + 5)- z/ Lip(Hdt' |, 27
0
. 1 J ! / ’
T(t) = exp | —iwyt | m + 7))~ Z/ Lop(t)dt'|. (28)
0

The wave function for the original system (untransformed system) can be derived
from

V@i, g2, 1) = UaUp¥ (g1, 42, 1) (29)

Using Egs. (4), (13), and (24), the above equation can be easily calculated as

wn,m(qla 42’ t) = ¢n,m(QIa q27 t)T(t)7 (30)
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where

LiLywiw;

/
¢n,m(611,612,t)=< P ) mexp[
JLiLo\'"? T oo\ 2
X H, [('—zwl> (01— q1,(")] | Hy (%) [02 — 42, ()]

%(pl,,le + Pzp(l)Qz)]

h
LiLy 2 2
Xe"p{ — 5 (@101 = q1,(®) +wz(Qz—Csz(t))]}, 31)
T(1) = Ti()T>(0), (32)

with
(0 (L1/Ly)"*cosp —(Ly/L)*sing \ (g (33)
0:)  \ (@Li/Ly)sing  (La/Lp)*cosg ) \q2 )
We now evaluate the wave function in p space. The Fourier transformation
of Eq. (24) give
D (Prs p2, 1) = Ui (pr V3, (P2, 1), (34)

where

4 o 1,2
Vi(pi, 1) = < 1 ) C y, < : ) P
VLiLyw h V2"n! ~LiLywy

1 2
e Ti(2), 35
XeXP( 5 Llea)lhpl> 1(1) (35)

/4 . -m 1/2
&fm(pz,t)z( ! ) " g, <—1 ) P2
VL1Lyw, hr V2mm) A LiLyws h

1 2
X € - T»(1). 36
Xp( 2 VL, Loon hl’z) 2(2) (36)

Applying the similar procedure as that of ¢ space, we derive the full wave function
for the original system to be

Vnm(P1, P2, 1) = UAUBIﬁ,Em(Pl, P2, 1)

= Gum(p1, p2, DT (1), (37



Thermal State for the Capacitance Coupled Mesoscopic Circuit 1843

where

1 1/4 (_i)ner
L1L2w1w2 hzﬂz) 2t i,

X exp |:—Lh[91p(f)(P1 — p1p() + g2, (t)(P2 — Pzp(f))]]

q_sn,m(pl» D2, t) = (

1/2
x H,

n |: mwl h [Pl - plp(t)]i|

X exp | — i)

P
L1L2 w1

1/2
x H,, [ _Llewz h [P — pzp(t)]}
{ L

+m(1)2 p2p(1)) :H (33)

Py (Ly/L)*cosg —(Li/Ly)"*sing \ [ pi
- , . (39)
P, (Loy/L)Y*sing  (L1/L2)*cosg ) \ p2

Equations (30) and (37) can be used to calculate various quantum mechanical
expectation values. Using Eq. (30), the fluctuations for charges and currents can
be calculated from

with

172

QJ = [<w11,m|qA12|wnm) - (<1l/nm|q1|1lfn m>)2] (40)

N N R 1/2
Ap; = (W] D2 V) = (W | B | W] 41)
Then, we can easily confirm that the uncertainty products in Fock state are
given by

AGiAp = 2 2n + 12 cost 2m + 1)* sin*
qiApr = —| (2n + 1) cos’ ¢ + (2m +1)"sin” ¢

w1

12
(0)) s 2 2
+ (_ + _> (2n + 1)(2m + 1) sin” ¢ cos (pi| , 42)
w) w1
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AG2Aps = 2| 2n + 172 sin 2m + 1)* cos*
7B pz—z(n+)smcp+(m+)cosw

1/2
w1 w3 .2 2

+ (— + —) 2n 4+ 1)(2m + 1) sin” ¢ cos (p:| . 43)
w? w1

Note that the above two equations do not depend on &(¢). It is known that the
uncertainty product for the TDHS driven by time-dependent external forces
such as electronic circuit with arbitrary power sources have nothing to do with
external forces and the same as that of the system with no driving forces (Choi,
2004; Gweon and Choi, 2003). Therefore, these evaluations are well agree to the
previous reports. For n = m = 0, Egs. (42) and (43) becomes the same as that in
Zhang et al. (2001) with Ry = R, = 0.

4. THERMAL STATE

The thermal state may be conveniently described in terms of the Lewis—
Riesenfeld (LR) invariant operator for the TDHS (Choi and Gweon, 2003; Ji and
Kim, 1996). If the time-dependence of the TDHS disappear, LR invariant operator
become the same as the Hamiltonian of the system. The invariant operator [ for
the transformed system can be easily constructed from

dig ol 1 . .
=2 = i, Hpl=0. 44
7 8t+ih[3 Bl (44)

Substitution of Eq. (19) into the above equation leads to

2
Is@r, pr. o, pon 1) =Y I5;(Gj, > 0, (45)
j=1
where
. N
Ij(§;, pj, 1) = ho; aBjaBj+§ , (46)

with annihilation operator dp; and creation operator &L ; that are given by

1/2 .
&._<—VL‘L2wf>/ Gy ——— L 5 (47)
Bj o qj 2 /_Llewj 2 Pj,
12
ab. = <—"L1L2wf> q-—l—f)». (48)
Bj 2h QL Lw; )2
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The invariant operator for the original system can also be easily obtained from
1@y, p1. G2, P2, 1) = UaUplp(1. p1. G2, 2. VU5 ' U (49)

Therefore, we can write

2
[@r. p1. G2, po ) =Y _ 1;G1. pr. G2, . ), (50)
j=1
where
S 1
I; = ho; ajaj+§ ) (5D
with
a; = U,Upag;U,'0}", (52)
al = 0,0pa},05'07". (53)

The ladder operators in the original system satisfies the boson commutation rela-
tion: [a;, &]T] = 1. For ¢(¢t) = 0, the time-dependence of the Hamiltonian disap-
pears and it can be shown that Eq. (50) become the same as the Hamiltonian of
the system. When we represent the eigenvalue equation of the invariant operators
in the form

[191a(q1, g2, 1) = Andia(qi, @2, 1), 4
bLon(qi, g2, 1) = hombom(qr, g2, 1), (55)
the eigenvalues A, and X,,, can be written as
1
= o (n + 5) , (56)
1
)\Zm = ha)2 (m + 5) . (57)

We see that the quantum number n and m are eigenvalues of &I&l and &ZT a,
respectively. The relation between the eigenstates in Egs. (54) and (55) and Eq. (31)
is

Gum(qr, 42, 1) = P1a(q1, G2, DP2m(q1, 42, 1). (58)

Suppose that an ensemble of the oscillator particles is in thermal equilibrium

with a temperature 7 and follows Bose-Einstein distribution statistics. Then, the

density operator must be determined so as to satisfy the well-known Liouville—von
Neumann equation (Ji and Kim, 1996) that is given by

90()
ot

1 N
+ —[p@), H] =0. (59
ih
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Since this equation is just the same as the relation written in terms of the invariant
operator [see Eq. (44) for the transformed system], any function of the invariant
operator may satisfy Eq. (5§9). Accordingly, the density matrix can be evaluated
from

o, h 1
,0(417427Q17QQ7t)= 2 Z wn,m(QI,QZ,t)eXp _ﬁ w1 n+§

n,m=0

1
+ (m + 5) } }tlf;ﬁm(q{, g5, 1), (60)

where Z is the partition function. The partition function is the sum of the
Boltzmann factors over all states:

o]

Z="3" (Y| Dy ). 1)

n,m=0

After performing the summation, Z becomes simply

z=[]z:. (62)

j=1
where

Z = !
7 2sinh[ hw; /(2kT)]

(63)

Substituting Eq. (62) into Eq. (60) and after some algebra, we get the density
matrix

2

p(a1, 02, 415 a5 ) = [ pitar. 42, 41 45, 1), (64)
j=1

where

T, e\ 772 .
pj = [;l—;w’tanh <%)i| exp [thjp(t)(Qj - Q})}

LiLyw; hw;

h .
+(Q; — Q) coth <TQ)TJ> ] } (65)
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of (Li/Lp)*eosp —(La/L1) M sing)\ (g 66)
0y)  \ (/L) sing  (La/Li)*cosp ) \a3)
Similarly, we can calculate the density matrix in the momentum space by making
use of Eq. (37) to be

with

2
A(p1, P2, phy o 1) = [ | i(p1s 2. PY, P ), (67)
j=1

where

= J

| hew; \ 172 i
= tanh )P — P!
Pi |:«/L1L2a)jhn an <2kT)] eXp[ 7 irO(P; ,)]

hw;
[Pj + P]/‘ - 2Pjp(t)]2 tanh < ’)

1
X € T
*P { 4 h\/Lngwj |: 2kT

oy hoj

+(P; — P)) coth<2kT>”, (68)
P (Ly/L))*cosg  —(Li/Ly)sing\ { p; .
P; N (Lz/Ll)l/4sin(p (Ll/L2)1/4cosg0 D ' (69)

5. UNCERTAINTY RELATION IN THERMAL STATE

with

In this section, we investigate the fluctuations of the canonical variables and
uncertainty relation in thermal state. The diagonal element of Eqs. (64) and (67)
are

2
fai. o) =[] fia ). (70)

j=1

2
Fpr.p) =[] Fipr. po). (71)

j=1
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where

12
VL Lyw; hw;
f/' = 1229 tanh i
' 2kT

hm
VLiLyw;
X exp |: — lh 29 tanh (2kT> [Q; — qu(t)]2:|, (72)

1 172
[ ()
! L Lyw; hr 2kT

1 hw 5
X exp |: — h«/ﬁw; tanh (2kT> [P; — pjp(®)] :| (73)

The expectation value of c}ﬁ. and ﬁl]. in thermal state are

o0 o0
aj)y =f / 4 f(q1. q2) dg1dgy, (74)
—0Q —0o0

= f f P} f(p1, p2)dpidps. (75)

Using the integral formulas

/ x exp[— (ax + bx 4+ ¢)]dx = ——\/:exp (— — c> (76)
[e'e] 2 2

/ x? exp[—(ax2 + bx + ¢)]dx = <L + b—) \/;e Xp (b— — c) a7n
oo 2a  4a?

Eq. (74) can be evaluated for / = 1, 2 to be

(Gi)r = 1/ [qlp(t) cos ¢ + g2,(1) sin ¢], (78)

(Az) = 2 L LCoth heo cos? —l—icoth ha)z sin?
NWr =N 2L L | o 2kT ¢ 2t )M Y

+[g1,(t) cos ¢ + g2, (1) sin w]z}, (79)

L
(@)r =] L—;[—qlp(n sin g + ¢, (t) cos @], (80)
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(A2) Ly h ! coth haon sin® ¢ 4+ : coth he cos’

= — — — — 1 — [

DT =N\ 2V L | o %UT T > WUT ¢
+ [—q1p(0) sing + g2, (t) cos o]’ } (81)

By similar way, Eq. (75) with [ = 1, 2 becomes

. J L .
(p1), = o [P1p(t)cos @ + pa,(1)sing], (82)
Li|VLiLyh h h
(Phr = /L_; { % |:a)1 coth (%) cos® ¢ + w, coth <Ta¥> sin’ (p:|
+[P1p(0) cos @ + pay()sing]” } (83)
A 4] L2 .
(P2)r =‘/L—l[—Plp(f)Slnw+P2p(f)005</’], (84)
L | VLiLy 1 h h
(ﬁg)r = /L_T { % |:a)1 coth (%) sin? ¢ + w, coth (ﬁ) cos’ (p:|
+[=p1p(t)sing + pzp(t)cosrplz}. (85)

Therefore, from Eqgs. (78)—(85), the fluctuations for charges and currents are

(AG) "o coth (220 cos? o + oy coth | 292 ) sin? 1"
= u— CO —— ] COS CO — | S1In s
DT =\ oL s | AT v 2wt )M Y

(Ag2) " [ coth (290 sin? + th (292 cos? 1"

= — | W CO — ] SIn w1 CO —— ] COS s
P =\ 2w, | AT v AT ¢
(Apvr =,/ Lik th hor 2o+ th hor) oo 17
PUr = ) w1 CO T CoS™ ¢ w7 CO 2kT sm- @ .
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(Ap2) ,/Lzh th (220 sin? g + s coth ( 222 ) cos® .
= _— CO — ] SINn CO —— ] COS .
pr 2 | 2%T gre 2T 4

(89)

Then, we can easily confirm that the uncertainty relations for charges and their
conjugate currents are given by

( A ) ( A ) n ) ;lwl ) 31602 -4
A q A D pp— co]h C( )S @ + COl]] _ sin go

1/2
ho h
coth coth @2 sin® ¢ cos® ¢ ,
2kT 2kT

o
(90)
h h
(Ag)r(Apr)r = 5|: coth? 2/:;1) sin* ¢ 4 coth? (%) cos* ¢
1/2
+ a)1 coth ho coth hey sin” ¢ cos? /
— — — | si .
" KT 2k ) PR
oD
If we replace from the above two equations as
hw;
coth X — 2n + 1, 92)
Ty
coth KT — 2m + 1, 93)

the uncertainty relations in thermal state exactly recovers to that in Fock state,
Egs. (42) and (43). Since these uncertainty products always larger than #/2, the
uncertainty principle hold.

6. CONCLUSION

The Schrodinger equation for the mesoscopic capacitance coupled circuit
with a power source is solved using two step unitary transformation. The original
Hamiltonian Eq. (3) is somewhat complicate since it involves the cross term §§»
and the power source term. In the first step transformation, we eliminated the cross
term by introducing angle ¢. The power source terms have been removed by means
of the particular solutions of the firstly transformed Hamiltonian system in the
second step transformation. Through these procedures, the original Hamiltonian
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converted to quite simple form, Eq. (19), so that we can easily treat it. The solution
of the Schrdédinger equation for the transformed Hamiltonian system is expressed
as Eqgs. (24) and (34) for g and p space, respectively. The relation for the wave
function between transformed and original Hamiltonian system is Eq. (29). The
exact full wave functions of the system are evaluated in Egs. (30) and (37).
These wave functions can be used to calculate various expectation values in Fock
state.

By introducing the LR invariant operator Eq. (50), the thermal state of the
system described. We supposed that an ensemble of oscillator particles is in
thermal equilibrium with a temperature T and follows Bose—Einstein distribution
statistics. The density operator must satisfy the Liouville—von Neumann equation.
As e(t) — 0, the Hamiltonian of the system no longer depend on time and Eq. (50)
becomes the same as the Hamiltonian. Then, the Boltzmann factor e 1/KT) i Eq.
(61) recovers to e~ H/&D) The density matrices in original system are Egs. (64)
and (67). By considering the diagonal elements of the density matrix we derived
the fluctuations of charges and currents. These fluctuations do not depend on
&(t). The uncertainty relations between charges and their conjugate currents are
given by Eqgs. (90) and (91) in thermal state. For T — 0, they exactly recovers
to that of Fock state, Egs. (42) and (43), with n, m = 0. On the other hand, the
uncertainty products increase with increasing temperature 7. We confirmed that
the uncertainty principle of the system always hold.

REFERENCES

Baseia, B. and De Brito, A. L. (1993). Quantum noise reduction in an electrical circuit having a time
dependent parameter. Physica A 197, 364-370.

Buot, F. A. (1993). Mesoscopic physics and nanoelectronics: nanoscience and nanotechnology. Physics
Reports 234, 73-174.

Chen, B., Li, Y. Q., Fang, H., Jiao, Z. K., and Zhang, Q. R. (1995). Quantum effects in a mesoscopic
circuit. Physics Letters A 205, 121-124.

Choi, J. R. (2002). Quantization of underdamped, critically damped, and overdamped electric circuits
with a power source. International Journal of Theoretical Physics 41, 1931-1939.

Choi, J. R. (2003). The decay properties of a single-photon in linear media. Chinese Journal of Physics
41, 257-266.

Choi, J. R. and Gweon, J. H. (2003). Thermal state of a harmonic oscillator with a linearly decreasing
mass. Journal of the Korean Physical Society 43, 17-23.

Choi, J. R. (2004). Coherent states of general time-dependent harmonic oscillator. Pramana-Journal
of Physics 62, 13-29.

Choi, J. R. (2006). Exact solution of a quantized LC circuit coupled to a power source. Physica Scripta
73, 587-595.

Choi, J. R. and Nahm, I. H. (in press). Canonical transformation approach to the classical solution of
RLC coupled two-dimensional circuit with an arbitrary power source. Modern Physics Letters B.

Gweon, J. H. and Choi, J. R. (2003). Propagator and geometric phase of a general time-dependent
harmonic oscillator. Journal of the Korean Physical Society 42, 325-330.



1852 Choi and Oh

Heinzen, D. J. and Wineland, D. J. (1990). Quantum-limited cooling and detection of radio-frequency
oscillations by laser-cooled ions. Physical Review A 42, 2977-2994.

Isihara, A. (1971). Statistical Physics, Academic Press, New York, p. 154.

Ji, J.-Y. and Kim, J.-K. (1996). Temperature changes and squeezing properties of the system of
time-dependent harmonic oscillators. Physical Review A 53, 703-708.

Landovitz, L. F,, Levine, A. M., and Schreiber, W. M. (1979). Time-dependent harmonic oscillators.
Physical Review A 20, 1162-1168.

Lewis, H. R., Jr. (1967). Classical and quantum systems with time-dependent harmonic-oscillator-type
hamiltonians. Physical Review Letters 18, 510-512.

Louisell, W. H. (1973). Quantum Statistical Properties of Radiation, Wiley, New York.

Robertson, H. S. (1993). Statistical Thermophysics, Prentice Hall, Englewood Cliffs, p. 450.

Um, C.1,Kim, I. H., Yeon, K. H., George, T. F., and Pandey, L. N. (1997). Wavefunctions and minimum
uncertainty states of the harmonic oscillator with an exponentially decaying mass. Journal of Physics
A: Mathematical and General 30, 2545-2556.

Wineland, D. J. and Dehmelt, H. G. (1975). Principles of the stored ion calorimeter. Journal of Applied
Physics 46, 919-930.

Yeon, K. H., Lee, K. K., Um, C. I, George, T. F.,, and Pandey, L. N. (1993). Exact quantum theory of
a time-dependent bound quadratic Hamiltonian system. Physical Review A 48, 2716-2720.

Yeon, K. H., Kim, H. J., Um, C. L, George, T. F., and Pandey, L. N. (1996). Propagator of a time-
dependent unbound quadratic Hamiltonian system. /l Nuovo cimento della Societa italiana di fisica.
B 111, 963-971.

Zhang, Z.-M., He, L.-S., and Zhou, S.-K. (1998). A quantum theory of an RLC circuit with a source.
Physics Letters A 244, 196-200.

Zhang, S., Choi, J. R., Um, C. I, and Yeon, K. H. (2001). Quantum uncertainties of mesoscopic
capacitance coupled circuit. Physics Letters A 289, 257-263.

Zhang, S., Choi, J. R., Um, C. I, and Yeon, K. H. (2002a). Quantum uncertainties of mesoscopic
inductance-resistance coupled circuit. Journal of the Korean Physical Society 40, 325-329.

Zhang, S., Choi, J. R., Um, C. I, and Yeon, K. H. (2002b). Quantum squeezing effect of mesoscopic
capacitance-inductance-resistance coupled circuit. Physics Letters A 294, 319-326.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


